PHYSICAL REVIEW B

VOLUME 1,

NUMBER 8 15 APRIL 1970

Ultrasonic Measurement of the Temperature Dependence of the
Nonlinearity Parameters of Copper*

R. D. PetERrs,} M. A. BREAZEALE,} AND V. K. PARE
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Received 29 August 1969)

The temperature dependence of the nonlinearity parameters of copper single crystals has been measured
in the range 77 to 300°K. (Nonlinearity parameters are combinations of third-order elastic constants.)
These measurements were made from a quantitative determination of the second-harmonic distortion of
pulsed MHz ultrasonic waves propagating in the three principal crystallographic directions. By maintaining
a constant detector gap of about five microns with a pneumatically controlled variable-gap capacitive
detector, it was possible to measure the nonlinearity parameters relative to their room-temperature values,
which were determined by absolute calibration. Typically, the nonlinearity parameters change linearly
with temperature by about ten percent. Over this temperature range, the measured values of the non-
linearity parameters are consistent with the assumption that the primary contributor to the third-order
elastic constants is the closed-shell repulsive interaction of nearest-neighbor atoms.

I. INTRODUCTION

HE recent increase in interest in the nonlinear
behavior of crystalline solids has been stimulated
in part by the possibility of measuring the third-order
elastic constants, which characterize this nonlinear
behavior. The third-order elastic constants can be de-
termined from a measurement of the variation of the
ultrasonic wave velocity with applied stress! or from a
measurement of the finite-amplitude distortion of an
initially sinusoidal ultrasonic wave.2 We have chosen the
latter technique since it can be readily adapted to
measurement at cryogenic temperatures.?

For cubic crystals there are known relations among
the elastic constants (of all orders) of the macroscopic
elasticity theory and the interatomic coupling param-
eters of (microscopic) lattice theory. With the avail-
ability of more and more information on higher-order
elastic constants, a quantitative comparison between
elasticity theory and the predictions of lattice dynamics
will be feasible.

In the case of monovalent noble metals such as
copper, the elastic constants can be determined theo-
retically at 0°K once the internal energy of the crystal
is specified. One technique for specifying the energy is
given by Wigner and Seitz.5 It is divided into kinetic
energy in the ground electronic state, Fermi energy of
the electrons, potential energy between charges, Van
der Waals energy of the ions, and exchange energy
resulting from overlapping of closed electronic shells.
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The exchange energy should play an increasingly im-
portant role in determining the elastic constants as the
order of the elastic constants increases, even though its
contribution to the total lattice energy is not very great.
In an adaptation of the technique of Wigner and Seitz,
Hiki and Granato® separated the energy into two terms:
the exchange energy between closed shells U,, and the
energy from all other sources U,. As the atoms are dis-
placed relative to each other, U, should vary rapidly,
while U, should change slowly and monotonically.
This difference between U, and U, is important to the
determination of the elastic constants, and their tem-
perature dependence, as can be seen from the following
special case.

Consider a uniform dilatation of the crystal. The
internal energy can be approximated by

U=A/r*—B/r", (1)

where 7 is the distance between any pair of adjacent
atoms, and the integers # and m satisfy #>m>1. The
term A /r* corresponds to U, and —B/r™ corresponds
to U.. The elastic constant of order p is obtained from
p derivatives of U with respect to r. Thus, the greater
the order of the elastic constant, the greater the effect
of the (repulsive-force) term U,, because n>m.

In considering the magnitudes of the third-order
elastic constants, one can assume central forces and
apply symmetry arguments to conclude that

C112=C166 y (2)
C123 =C45ﬁ = C144 .

These relations are analogous to the Cauchy relations
among the second-order elastic constants. Hiki and
Granato® have considered the problem in more detail.
Assuming central forces and that only the repulsive-
force term U, is important to the determination of the
third-order elastic constants, they conclude that

C111=2C112=2C156,
C123=Cl56=C144=0.
6Y, Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).

©)

1 3245



3246 PETERS,

TasLE I. K, and Kj; for [100], [110], and [111] directions.

Direction K, K,
[100] Cu Cn
[110] 3(Cuut+Ci2+2Cs)  $(Citr+3C112+12C166)

[111]  3(Cu+2C12+4Css)  (Cr114+6C110+12C144+24C166) /9

4+ (2C123+16Cs6) /9

These relationships were derived under the assumption
that the sample be at 0°K and that the zero-point
energy be negligible. The effect of temperature is out-
lined in the Appendix, where only the “high-tempera-
ture limit” is considered.

For the second-order elastic constants of copper,
Hiki and Granato® could compare their conclusions and
experimental results with the experimental results of
Overton and Gaffney.” For the third-order constants,
however, only room-temperature data were available
at that time.®? These data tended to support the as-
sumption that the third-order, and higher-order, con-
stants are determined primarily by the exchange energy.
Direct comparison between theory and experiment
could not be made, however, until the low-temperature
uniaxial stress measurements of the third-order elastic
constants were made by Salama and Alers.’® These
results disagreed with the conclusions drawn from the
theory of Hiki and Granato. The present measurements
of the nonlinearity parameters (which are linear com-
binations of third-order elastic constants) help to clarify
this situation for copper.

II. EXPERIMENTAL TECHNIQUE

When an ultrasonic wave propagates through a non-
linear medium, harmonics of the initially sinusoidal
altrasonic wave are generated.! Measurement of the
absolute value of the amplitude of the second harmonic
and of the fundamental gives sufficient information to
calculate the magnitude of the coefficient of the first
nonlinear term in the equation of motion.

A pure longitudinal wave propagating along the three
principal directions in a cubic crystal is described by?

*U <azU aU o*U

p
fos2

= DUPUNE @)

= +-3——)+Ks
da da?

104 62U)
da da?

da?

where U is the particle displacement, p is the mass
density in the unstrained state, ¢ is the Lagrangian
coordinate measured along the direction of propagation,
and the quantities K2 and K; are linear combinations
of second- and third-order elastic constants, respec-
tively. Values of K» and K for the three principal direc-
tions are given in Table I. The growth of the second
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harmonic with propagation is predicted by the solution
of Eq. (4), which can be written

3K +K;
U=4 sin(ka—owt)— (—————)A k%

K2
Xcos2(ka—wt)+-++. (5)

Measurement of the fundamental amplitude 4 and the
second-harmonic amplitude gives sufficient information
to calculate K; since the other quantities are known.
Repetition of such measurements would in principle
allow one to determine the temperature dependence of
K3; however, a relative measurement is more precise
in the present experiment.

A. Apparatus

The basic system, which is electrically similar to the
one used by Gauster and Breazeale,? is shown in Fig. 1.
A pulsed sinusoidal ultrasonic wave is generated by a
quartz transducer. This ultrasonic wave and its har-
monics are detected by a capacitive detector which is an
improved version of the one used by Gauster and
Breazeale.’? The 30-MHz and 60-MHz amplifiers are
i.f. amplifiers which selectively amplify either the funda-
mental or the second-harmonic component. Since the
present detector®® is in a cryostat physically separated
from the i.f. amplifiers, it proves to be advantageous to
match the impedance of the transmission line to the
50-Q input impedance of the i.f. amplifiers. This both
reduces errors caused by impedance mismatch and
eliminates the preamplifier used by Gauster and
Breazeale.’? To compensate for the effect of differential
thermal expansion, this detector spacing is pneumat-
ically adjusted between three and ten microns. By
monitoring the capacitance with a bridge, the spacing
can be held constant to #0.19, as the temperature is
changed. Since the characteristics of the transmission
line used are observed to remain constant to within the
accuracy of measurement over the temperature range
77-300°K, it is now possible to make measurement of
the nonlinearity parameters relative to their, room-
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F16. 1. Cryogenic measurement system.
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temperature values. The calibration apparatus shown
in Fig. 1 can be used at room temperature to make an
accurate calibration by a substitution technique. Meas-
urements at lower temperatures can then be made
relative to the room-temperature value, with an increase
of precision since it is no longer necessary to calibrate
at each temperature.

The display of the electrical signal on the oscilloscope
is a standard technique; however, it proves convenient
to be able to monitor the Fourier components of the
received pulse with the spectrum analyzer as a means of
deciding when the pulse is long enough and uniform
enough to approximate the propagation characteristics
of an infinite plane wave. The inclusion of the boxcar
integrator to average out the effects of random noise
results in an increase of sensitivity greater than a
factor of 10.

B. Samples and Bonds

The copper single crystals used in the present ex-
periment are three of the ones used by Gauster and
Breazeale for measurements at room temperature.
They were grown by F. W. Young, Jr., Solid State
Division, Oak Ridge National Laboratory, from
American Smelting and Refining Co. 99.9999, copper
by a Bridgeman technique. One sample each of the
three principal orientations was used. Dislocation effects
were reduced by irradiation with fast neutrons.’® The
total dose was 107 to 10'® neutrons/cm? Sample end
faces were lapped optically flat and parallel to within
approximately 10 sec of arc. Sample orientations
checked by Laue backreflection x irradiation were
accurate to better than 1 deg.

The only bond found satisfactory over the full tem-
perature range 77-300°K was the adhesive from a cellu-
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F16. 2. Second-harmonic amplitude versus the square of the
fundamental amplitude at 30 MHz in copper crystals.
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TaBLE II. Measured values of room temperature K; for
[100], [110], and [111] directions in copper.

K3
Direction (102 dyn/cm?)
[100] —13.9
[110] —31.2
[111] —25.7

lose tape. The tape is applied to the sample and warmed
under water. The backing is then gently peeled off and
the transducer applied. These bonds were found to be
thin and fairly uniform if applied carefully.

C. Measurements

Low-temperature measurements are made in the
following manner. The 30-MHz ultrasonic pulse and its
second harmonic are amplified, detected, and recorded
at room temperature for a particular setting of the
circuit parameters. A calibration run is made. For other
temperatures the circuit parameters are held constant.
Thus, the system is controlled so that the output of
either amplifier is given by

Vou=const XA Vs, 6)

where A4 is the amplitude of the ultrasonic wave com-
ponent under consideration and V5 is the bias voltage
of the detector. In going from a reference temperature
TZ to a different temperature 7 it is convenient to hold
the fundamental amplitude constant by suitably ad-
justing the drive voltage to the quartz transducer while
keeping the detector bias constant. The change in the
nonlinearity parameter is then determined from the
change in second harmonic in going from 7% to 7. The
simplest way to determine this change is to adjust
the bias voltage, while at 7, so that for the second-
harmonic signal

I/2outT= V2outR ) (7)

where the superscript, R refers to the reference tem-
perature. Then the second-harmonic amplitude of the
ultrasonic wave at temperature 7" is given by

AT =AR(VoB/ V7). 8)

Thus, 4.7 can be measured relative to its value at TE.
By incorporating Eq. (8) into the second-harmonic
amplitude

As= A2k2a(

8K,

expressed in Eq. (5), and taking into account other
changes with temperature, one can write

K; K, B Vof Ko
— = ——|:1—l— —(Kz—‘“-—‘— —1):| , (10)
K3®  KoF 1+8\ Vi KoF

where the superscript R indicates the value of the
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F1c. 3. Temperature dependence of the nonlinearity
parameters of copper.

parameter at the reference temperature,

8r 4.
,8=—[ ] and k=14aAT,
3LA %%

a being the linear expansion coefficient. For the accuracy
of this experiment ¥2=1, so the relative value of K3 can
be determined from

_1)] R

K3 K» B (VB K.
el
A. Room-Temperature Measurements

K& KoP

148\ Ve

Ve KoF
III. RESULTS

The room-temperature values of the nonlinearity
parameters were measured to (1) provide a reference
value for the relative temperature-dependence measure-
ments and (2) check the reproducibility of measure-
ments by this technique (since the results can be com-
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TasiE III. Values of the integers #» and m in Eq. (12)
for [100], [110], and [111] directions.

Direction n m
[100] 1 1
[110] 17 8
[111] 16 9

pared with those of Gauster and Breazeale'®). The re-
producibility check is desirable since (1) a modified
calibration scheme was used in which a switching
arrangement in the sample holder allowed calibration
to be made with the sample in place, (2) measurements
were made without the preamplifier used previously,
and (3) the amplitude of the fundamental is reduced
by a factor of 10 below that used previously. A plot of
the room-temperature value of the second harmonic
amplitude as a function of the square of the funda-
mental amplitude is given in Fig. 2. The slopes of these
curves give the nonlinearity parameters directly when
the values of K, are known. These nonlinearity param-
eters are shown in Table II. The values of K, used for
calculation of these values of K3 were determined from
the results of Overton and Gaffney.” These K agree well
with those of Gauster and Breazeale.’* The greatest
difference, which occurs for the [110] values, is only
49,. This is well within the previously stated maximum
probable error of 109,

B. Low-Temperature Measurements

The measured temperature dependence of the non-
linearity parameters is shown in Fig. 3. All measure-
ments were made relative to the room-temperature
values given in Table II. Again, the K, values were
calculated from the results of Overton and Gaffney.”
The scatter of the data points, which is very small in this
case, is an indication of the precision of the measure-
ment. The error of these relative measurements is
estimated to be between 2 and 5%,.

TaBLE IV. Comparison of nonlinearity parameters with the theoretically determined relation K3= (1/m)C111 (units of 1012 dyn/cm?).

Room temperature

T771°K

0°Ks»

[110] direction

[110] direction

[110] direction

n/m=17/8 n/m=17/8 n/m=17/8
Expt.P K; (n/m)Cin Y diff. Expt.b K, (n/m)Ci1 9, diff. Expt.b K, (n/m)Ci1 Y diff.
(a) —31.2 —29.5 5.6 (a) —32.5 —32.3 0.6 (a) 33.2 32.1 3.4
(b) —32.5 —30.4 6.7
(c) —32.7 —27.0 19
(G)] —29.5 —31.9 7.8 (d) —35.2 —41.4 16.2 ) —35.3 —42.5 18.5
[111] direction [1117] direction [111] direction
n/m=16/9 n/m=16/9 n/m=16/9
(a) —25.7 —24.7 4.0 (a) —27.8 —26.7 4.0 (a) 28.7 26.9 6.5
(b) —259 —25.4 2.0
(c) —29.5 —22.6 26
d) —27.2 —26.7 1.9 (d) —32.0 —34.7 8.1 (d) —32.5 —35.6 9.1

a Straight-line extrapolation of data to 0°K.

b (a) Present experiment; (b) Gauster and Breazeale, Ref. 14; (c) Hiki and Granato, Ref. 6; (d) Salama and Alers, Ref. 10.
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IV. DISCUSSION

The degree to which the present results agree with
the relations among the third-order elastic constants
predicted from Eq. (3) can be demonstrated by ob-
serving that, according to Eq. (3), all the Kj’s are
expressible as

Ka‘—‘ (n/m)Cm, (12)

where # and m are integers. The values of these integers
for the three principal directions are given in Table III.
Using these values of # and m, one can determine the
extent to which the measured values of K3 agree with
those predicted under the assumption of central forces
and nearest-neighbor interactions [Eq. (12)7]. The re-
sults are shown in Table IV. The agreement between
measured and predicted values is within experimental
uncertainty over the entire temperature range for the
present experiment. There is better agreement as the
temperature is decreased. The values at 0°K are the
result of a straight-line extrapolation. In the absence of
data at this temperature this appears to be a reasonable
procedure, since the effect of the zero-point energy on
the magnitude of the third-order elastic constants is
assumed to be small. Note that the difference between
K3 and (n/m)Ci11 remains small. It is to be noted that
the values of K3 and (#/m)C111 calculated from the data
of Salama and Alers?® differ more than the present
results, especially at the lower temperatures. Further
data are required to determine the best value of these
combinations of third-order elastic constants. It can,
however, be pointed out at this time that the present
data are consistent with the third-order elastic constants
for copper calculated from first principles by consider-
ing only nearest-neighbor interactions and assuming a
central-force model.

APPENDIX: TEMPERATURE DEPENDENCE
OF ELASTIC CONSTANTS

According to the method developed by Leibfried and
Hahn'® the temperature variation of the elastic con-
stants is theoretically determined from calculations
based on the free energy. The free energy is chosen
because its independent variables, temperature and
strain, more simply characterize the state of the crystal
than do entropy and strain, which specify the internal
energy. Ultrasonic wave propagation in a solid is, how-
ever, an adiabatic process, whereas according to the
definition of the elastic constants used here' the free
energy gives the isothermal constants. The difference
between the two can be calculated,’® though, and is
small enough compared with present experimental in-
accuracies to be neglected.

16 G. Leibfried and H. Hahn, Z. Physik 150, 497 (1958).

17 K. Brugger, Phys. Rev. 133, A1611 (1964).

18 G. Leibfried and W. Ludwig, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York,
1961), Vol. XII.
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The free energy per unit cell of a crystal can be
written

[=Vo@tfb, (A1)
where fvi* is the vibrational contribution, V, is the
unit cell volume, and ® is the potential energy per unit
volume of the crystal at temperature T' when all the
atoms are situated in their mean positions.® ® is an
explicit function only of the lattice parameter and the
strain. It is indirectly dependent on 7 through thermal
expansion.?

At a reference temperature T let the lattice param-
eter be 7. For cubic crystals the expansion of the crystal
with temperature change is isotropic. If this change is
assumed to be linear, the change with temperature of
the third-order constants defined from f can be calcu-
lated according to the following scheme. First, the
change arising from the potential energy term & can
be calculated directly:

d
Copy® (1) = Capy®(ro)) =K(T— To)a—Cam“’ | , (A2
/s

r=r0

where K is a constant. Second, because the phonon
density of states depends on the strain (nonlinear
effect), f¥i® can be expanded in terms of the strain
components 7;;

F8"° = fiktmatinetimn , (A3)
where repeated indices are to be summed over. If the
indices of f5jzima are contracted according to convention
to give fapy, then fagy/Vo by definition is the vibrational
part of the third-order elastic constant. Thus, one can
write the change in Cag,"™® in going from (T'o,ro) to
(Tyr) as

Capy" ™ (T,7) —Capy"™(To,0)
1
= ;[faﬁ‘y(Tar)_'fﬂﬁ“/(TO;rO)]' (A4)

Combining (A2) and (A4) gives the total change in the
third-order constant

[¢]
Capy(T,7) —Copy(Tore) =K (T — TO)'(;Canq’ (r)
7

1
+ —Lfapy (T7) = fapy (Toiro)]. (AS)
Vo

Ghate® has shown that in the high-temperature limit

19 A, A. Nran’yan, Fiz. Tverd. Tela 5, 177 (1963) [Soviet Phys.
Solid State 5, 129 (1963)7].
2 P, B. Ghate, Phys. Rev. 139, A1666 (1965).
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(above approximately one-fourth the Debye tempera-

ture) fasy (which depends on the interatomic potential)
is linear in temperature. If one defines

Sasy(Ts7)— fapy(To,10)
gaﬁ = I
! T—T,

(A6)

one can obtain a temperature coefficient for the third-
order elastic constants

Copy(Tr) =Coapy(Tor0)+Aasy X (T—To), (A7)

BREAZEALE, AND PARE 1

where

8aBy

a
Aapy =K6—Ca,g.,‘1’ n| + (A8)
7

r=r0 VO
In summary, Ces,® and g.s, are independent of tem-
perature by definition. Thus, Eq. (A7) predicts that the
third-order constants are linear functions of tempera-
ture (above approximately 1@). The slope of a plot of
the constants as a function of temperature is the
coefficient A44p,. Future detailed comparison of mea-
sured values of this coefficient and the theoretical value
as determined from the calculations indicated in Eq.
(A7) could conceivably yield important information
about interatomic forces.
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The coherent-potential approximation (CPA) is extended to study general band shapes and systems having
orbital degeneracy. This permits its application to realistic systems, in particular the N¢Cu alloys. The effects
of alloying on a highly asymmetric model density of states characteristic of some of the features of the
density of states in fcc transition metals are considered in detail. A model Hamiltonian for paramagnetic
NiCu is constructed using a basis of orthogonalized plane waves and tight-binding d functions. Orbital
degeneracy and hybridization are treated as in paramagnetic Ni. Effects of alloying are assumed to be
restricted to the diagonal elemensts of the d-d block. The model is applicable to the Ni-rich alloys, as is the
approximation used to obtain simple solutions of the full CPA equations. The results are consistent with
recent photoemission data on NiCu, and with the “minimum polarity’’ hypothesis used by Lang and
Ehrenreich. They are incompatible with the rigid-band model because the scattering potential of the random
alloy is strong compared to the peak widths. Rather than a rigid shift of the density of states, the calculated
concentration dependence shows that the main peaks remain stationary while changing magnitude and shape.
Decomposition of the total density of states into Ni and Cu contributions confirms that, for the expected

position of the Fermi level, the & holes are located primarily on Ni sites.

I. INTRODUCTION

N this paper the electronic density of states and other
one-electron properties of the NiCu alloys above
their Curie temperatures are studied within the co-
herent-potential approximation (CPA).! The work re-
ported is the first attempt to apply the CPA to a real
alloy system.

The CPA, introduced by Soven! for the study of elec-
trons in a substitutional alloy, and earlier by Taylor?
for the formally similar phonon case, has been studied
in detail in several recent papers.>—®

* Supported in part by Grant No. GP-8019 of the National
Science Foundation and the Advanced Research Projects Agency.

T Present address: The James Franck Institute, the University
of Chicago, Chicago, Ill. 60637.

I Present address: Institute of Solid State Physics, Czecho-
slovak Academy of Sciences, Prague.
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The CPA results from the self-consistent solution of
the usual multiple-scattering version® of the Schridinger
equation, within a single-site approximation,* in which
the properties of all sites but one are averaged over, and
that one is treated exactly. It has therefore been found
useful in the description of short-ranged scattering in
the alloy. The principal advantage of the CPA over
other simple approximations results from its self-con-
sistency ; the CPA extrapolates away from the limits of
low concentration and weak scattering in a physically
reasonable way. Effects due to details of the possible
local surroundings of a site, are of course averaged over
in this approximation. However, we are not interested,
in the calculations to be reported, in such refinements
as “tails”” of localized states.

The idealized model treated in VKE based on a non-
degenerate tight-binding band is far removed from a
real alloy, but NViCu proves to be a good candidate for
treatment by an alloy theory not very much more

6 M. Lax, Rev. Mod. Phys. 23, 287 (1951).

71. M. Lifshitz, Usp. Fiz. Nauk 83, 617 (1964) [Soviet Phys.—
Usp. 7, 549 (1963)7.



